MATH INTERVENTION TEACHER

This packet is for all students that Mr. Maffesoli teaches in 6th Grade, 7th Grade, and 8th Grade.

All of the documents in this packet, along with all of the videos that are referenced can all be accessed on our Google Classroom page.

You can also download this entire packet at:
MrMaff.weebly.com

Topic \#1:	Wholes x Fractions Using Pattern Blocks
Topic \#2:	Wholes x Fractions Using Shading
Topic \#3:	Multiply Fractions Using an Area Model
Topic \#4:	Multiply Fractions by Simplifying
Topic \#5:	Whole Numbers \div Unit Fractions
Topic \#6:	Unit Fractions \div Whole Numbers
Topic \#7:	Count Cubes to Calculate Volume
Topic \#8:	Volumes of Rectangular Prisms

* Complete the tasks in the order that they appear on this sheet
* Dates are only suggestions, so work at whatever speed is good for you
* To submit, just take photos of both sides of each Set C task and e-mail them
* For videos, the time in minutes \& seconds appears in the ()
* The only things that need to be submitted are any Set C tasks
* The checkboxes are for you to keep track of what's done
\square Mr. Maffesoli's Homemade Video (4:50) Multiply a Fraction by a Whole Number
[Link is in Google Classroom]
- Multiply Fractions x Wholes using Pattern Blocks: Set A, Set B, Set C [scissors needed] Topic \#2: Wholes x Fractions Using Shading Suggested Dates: April 27-May 1
\square Khan Academy Video (4:05) Multiplying fractions and whole numbers visually
[Link is in Google Classroom]
\square LearnZillion.com Video (4:54) Multiply by fractions: using repeated addition
[Link is in Google Classroom]
\square Multiply Wholes x Fractions (using shading) : Set A, Set B, Set C
Topic \#3: Multiply Fractions Using an Area Model
Suggested Dates: May 4-May 8
\square Mr. Maffesoli's Homemade Video (4:58) Multiply Fractions using an area model [Link is in Google Classroom]
\square Khan Academy Video (4:57) Multiplying 2 fractions: Fraction Model [Link is in Google Classroom]
\square Multiply Fractions using an Area Model : Set A, Set B, Set C
\square [Optional] Online Game: Arcademics Snow Sprint [Link is on Google Classroom]
Topic \#4: Multiply Fractions by Simplifying
Suggested Dates: May 11-May 15
\square Explanation from the teacher screencast(1:58) Multiply Fractions using Simplifying [Link is in Google Classroom]
\square Khan Academy Video (2:26) Multiplying 2 fractions: $5 / 6 \times 2 / 3$ [Link is in Google Classroom]
\square Multiply fractions by simplifying : Simplify after Multiplying, Cross-cancel Once, Cross-cancel Twice
\square [Optional] Online Activity: Practice Test [Link is on Google Classroom]

Topic \#5: Whole Numbers : Unit Fractions

Suggested Dates: May 18-May 22
\square Explanation from the teacher screencast (2:02) Whole Numbers \div Unit Fractions [Link is in Google Classroom]
\square Mr. Maffesoli's Homemade Video (4:33) Whole Numbers \div Unit Fractions [Link is in Google Classroom]
\square [Whole Numbers \div Unit Fractions] Set A, Set B, Set C
\square Khan Academy Video (1:51) Dividing a Whole Number by a Unit Fraction [Link is in Google Classroom]

Topic \#6: Unit Fractions \div Whole Numbers
 Suggested Dates: May 25-May 29

\square Mr. Maffesoli's Homemade Video (4:33) Unit Fractions \div Whole Numbers [Link is in Google Classroom]
\square Explanation from the teacher screencast (3:09) Unit Fractions - Whole Numbers [Link is in Google Classroom]
\square [Unit Fractions : Wholes] Set A, Set B, Set C
\square Khan Academy Video (2:25) Dividing a Unit Fraction by a Whole Number [Link is in Google Classroom] Topic \#7: Count Cubes to Calculate Volume Suggested Dates: June 1-June 5
\square Mr. Maffesoli's Homemade Video (3:26) Count Cubes to Find Volume [Link is in Google Classroom]
\square Khan Academy Video (2:13) Measure Volume with Unit Cubes [Link is in Google Classroom]
\square Count Cubes to Calculate Volume: Volume Cubes, Count Cubes Flashcards, Count Cubes to Find Volume
\square [Optional] Online Activity: Volumes of Rectangular Prisms Made from Unit Cubes [Link is in Google Classroom]

Topic \#8: Volumes of Rectangular Prisms (using a formula)

Suggested Dates: June 8-June 10
\square Explanation from the teacher screencast (1:45) Calculate Volume using formula [Link is in Google Classroom]
\square Mr. Maffesoli's Homemade Video (3:55) Volumes of Rectangular Prisms [Link is in Google Classroom]
\square Volumes of Rectangular Prisms: Set A, Set B, Set C
\square Khan Academy Video (7:22) Measure Volume as Area x Length [Link is in Google Classroom]

Multiply Wholes x Fractions (using pattern blocks)

\#1 PRINTOUT (Examples and cut-outs, then Set A)

\#2 PRINTOUT (Set B)

\#3 PRINTOUT (Set C)

Wholes \times Fractions (Set A, Set B, Set C)

SAMPLE:
$3 \times \frac{5}{6}=?$

Pattern Block Cut-outs

You could use a single fraction piece multiple times and color onto the hexagons as you trace the individual pieces, or you can cut out all of the fraction pieces. Extra pieces are included on this page. If you still need more just print an extra copy of this page.

\qquad Hour \qquad Date \qquad Multiplying Whole Numbers and Fractions [Set A: Two pages]

Name \qquad Hour \qquad Date \qquad Multiplying Whole Numbers and Fractions [Set B: Two pages]

Name
Hour \qquad Date Multiplying Whole Numbers and Fractions [Set C: Two pages]

Multiply Wholes x Fractions (using shading)

\#1 PRINTOUT (Set A)

\#2 PRINTOUT (Set B)

\#3 PRINTOUT (Set C)

Name \qquad Class \qquad Date \qquad
Shade in the fractions to solve the equation in the box. If possible, use different colors for each instance of the given fractions. If you don't have different colors use light shading and darker shading so that the groups are easy to see (like in the example). Record your answers as both an improper fraction and a mixed number. You don't have to reduce any fractions. Solve all nine problems.

EXAMPLE: $14 \times \frac{1}{9}=\frac{14}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		$\frac{1}{9}$	$\frac{1}{9}$	EXAMPLE: $5 \times \frac{3}{4}=\frac{15}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\underline{1}$		$\frac{1}{4}$		$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	9	$\frac{1}{9}$	$\frac{1}{9}$						1					
$\frac{14}{9}$ is also $1 \frac{4}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	9	$\frac{1}{9}$		$\frac{7}{4}$ is also $3 \frac{3}{4}$	$\frac{1}{4}$	II	$\frac{1}{4}$	$\frac{1}{4}$	1		$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

I

Name \qquad Class \qquad Date \qquad
Shade in the fractions to solve the equation in the box. If possible, use different colors for each instance of the given fractions. If you don't have different colors use light shading and darker shading so that the groups are easy to see (like in the example). Record your answers as both an improper fraction and a mixed number. You don't have to reduce any fractions. Solve all nine problems.

EXAMPLE: $14 \times \frac{1}{9}=\frac{14}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		$\frac{1}{9}$	$\frac{1}{9}$	EXAMPLE: $5 \times \frac{3}{4}=\frac{15}{4}$	$\frac{1}{4}$	$\frac{1}{4}$		1	$\frac{1}{4}$	$\frac{1}{1}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	9	$\frac{1}{9}$	$\frac{1}{9}$	9	$\frac{1}{9}$		$\frac{15}{4}$ is also $3 \frac{3}{4}$										
$\frac{14}{9}$ is also $1 \frac{4}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		$\frac{15}{4}$ is also $3 \frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$		$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Improper Fraction: Mixed Number:	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$7 \times \frac{2}{3}=$					
$5 \times \frac{3}{4}=$	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{4} \frac{1}{4}$	$\frac{1}{4}$ $\frac{1}{4}$
	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4} \quad \frac{1}{4}$	$\frac{1}{4} \quad \frac{1}{4}$
$8 \times \frac{3}{5}=$					

Name \qquad Class \qquad Date \qquad
Shade in the fractions to solve the equation in the box. If possible, use different colors for each instance of the given fractions. If you don't have different colors use light shading and darker shading so that the groups are easy to see (like in the example). Record your answers as both an improper fraction and a mixed number. You don't have to reduce any fractions. Solve all nine problems.

EXAMPLE: $14 \times \frac{1}{9}=\frac{14}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	1	$\frac{1}{9}$	$\frac{1}{9}$	EXAMPLE: $5 \times \frac{3}{4}=\frac{15}{4}$	$\frac{1}{4}$	$\frac{1}{4}$		$\frac{1}{11}$	$\frac{1}{4}$	1	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
14	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	1											
$\frac{14}{9}$ is also $1 \frac{4}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	9 $\frac{1}{9}$	$\frac{1}{9}$		$\frac{15}{4}$ is also $3 \frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	1	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Improper Fraction: Mixed Number:	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\begin{aligned} & \qquad 12 \times \frac{1}{3}= \\ & \text { Improper Fraction: Mixed Number: } \end{aligned}$					
$9 \times \frac{2}{4}=$	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{4} \frac{1}{4}$	$\frac{1}{4}$ $\frac{1}{4}$
	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4} \quad \frac{1}{4}$	$\frac{1}{4} \quad \frac{1}{4}$
$3 \times \frac{4}{5}=$					

Multiply Fractions using An Area Model

\#1 PRINTOUT (Examples, then Set A)
Multiplying Fractions Using An Area Model : [Set A] Two pages You must write the correct answer AND shade your picture correctly.
(1) $\quad \frac{1}{2}$ of $\frac{1}{2}=$
(2) $\frac{1}{2}$ of $\frac{1}{4}=$

\#2 PRINTOUT (Set B)

\#3 PRINTOUT (Set C)

Multiplying Fractions Using An Area Model : [Set C] Two pages
You must write the correct answer AND shade your picture correctly.
(1) $\quad \frac{1}{2}$ of $\frac{2}{3}=$
(2) $\frac{1}{2}$ of $\frac{3}{5}=$

Multiply Fractions Using an Area Model

Examples:

On the diagram below, shade in the product for :

Since we need $1 / 2$ of the shaded $3 / 4$, we cut what is showing into halves (which means two equal pieces) by drawing a line.

Note: You MUST ALWAYS cut criss-cross to the piece that is already shaded. If the shaded part is done in horizontal pieces, your cut must be vertical.

Now, with your own writing tool, shade in one of the two halves that you just created.

Notice that the whole square is now separated into 8 equal parts.

The correct answer (3/8) is the area that is in the overlap because it represents $1 / 2$ of the original $3 / 4$.

The correct answer $(4 / 15)$ is the area that is in the overlap because it represents $1 / 3$ of the original $4 / 5$.

1		
2		
3		
4		

Start by drawing a horizontal line and shading the second fraction (1/2). You know to shade in the rows because there are only two here.

Notice that the whole square is now made up of 15 equal pieces.
Next fill in the first fraction (1/3) on top of the $4 / 5$. You know that these are columns because there are three.

Next draw the vertical lines and fill in the first fraction $(3 / 5)$ on top of the $1 / 2$. You know that these are columns because there are five.

Notice that the whole square is now made up of 10 equal pieces.

The correct answer $(3 / 10)$ is the area that is in the overlap because it represents
$3 / 5$ of the original $1 / 2$.

\qquad
\qquad
Multiplying Fractions Using An Area Model : [Set A] Two pages You must write the correct answer AND shade your picture correctly.

(3) $\frac{1}{2}$ of $\frac{5}{6}=$

(5) $\frac{2}{3} \times \frac{4}{5}=$

(9) $\frac{1}{3} \times \frac{3}{4}=$

(11) On the diagram below, shade in the product for

$$
\frac{1}{2} \times \frac{1}{3}
$$

(8) $\frac{3}{5} \times \frac{2}{3}=$

(10)

$$
\frac{4}{5} \times \frac{4}{6}=
$$

(12) Use the starter marks to draw the fraction area for this expression: $\frac{2}{3} \times \frac{3}{4}$

\qquad
\qquad
Multiplying Fractions Using An Area Model : [Set B] Two pages You must write the correct answer AND shade your picture correctly.
(1) $\frac{1}{5} \times \frac{3}{5}=$

(2) $\frac{2}{3} \times \frac{3}{4}=$

(3)
$\frac{3}{4} \times \frac{1}{2}=$
(4)
$\frac{2}{3} \times \frac{4}{5}=$

(5) $\frac{1}{4}$ of $\frac{4}{5}=$

(6) $\frac{1}{2}$ of $\frac{5}{6}=$

(7) $\frac{2}{5} \times \frac{3}{4}=$

(9)

$$
\frac{1}{4} \times \frac{3}{6}=
$$

(10) $\frac{1}{3} \times \frac{1}{2}=$

11 On the diagram below, shade in the product for

$$
\frac{4}{6} \times \frac{2}{3}
$$

(12)

Use the starter marks to draw the fraction area for this expression: $\frac{2}{4} \times \frac{1}{2}$

\qquad
\qquad

Multiplying Fractions Using An Area Model : [Set C] Two pages

You must write the correct answer AND shade your picture correctly.
(1)
$\frac{1}{2}$ of $\frac{2}{3}=$

(2) $\frac{1}{2}$ of $\frac{3}{5}=$

(3) $\frac{1}{3}$ of $\frac{5}{6}=$
(4) $\frac{2}{3}$ of $\frac{3}{4}=$

(5)
$\frac{2}{3} \times \frac{1}{2}=$
(6)
$\frac{2}{5} \times \frac{1}{5}=$

(7) $\frac{4}{5} \times \frac{2}{4}=$

(9) $\frac{3}{4} \times \frac{1}{3}=$

(11) On the diagram below, shade in the product for

$$
\frac{1}{6} \times \frac{2}{3}
$$

(8) $\frac{1}{4} \times \frac{1}{4}=$

(10) $\frac{4}{6} \times \frac{2}{3}=$

Use the starter marks to draw the
(12) fraction area for this expression:

$$
\frac{3}{5} \times \frac{1}{2}
$$

Multiply Fractions by Simplifying Numbers

\#1 PRINTOUT (Simplify After Multiplying)

\#2 PRINTOUT (Cross-Cancel Once)

\#3 PRINTOUT (Cross Cancel Twice)

\qquad
\qquad
\qquad
Multiply Fractions : Simplify After Multiplying

Name	Hour		Date \qquad mplify) Once
	Multiply F	actions: Cross Canc	
Example	$\frac{9}{20} \times \frac{4}{5}$	$\frac{9}{5} \times \frac{1}{7}$	$\frac{9}{5} \times \frac{1}{7}=\frac{9}{35}$
	1st: Simplify One Set (in this case $4 \div 4=1$ and $20 \div 4=5$)	2nd: Rewrite the problem with simplified fractions	3rd: Multiply straight across the simplified fractions \quad now-
	Follow these same 3 steps in order to solve the problems on your own.		
\#1	$\frac{2}{3} \times \frac{9}{6}$	$\square \times \square$	$\square \times \square$
\#2	$\frac{6}{9} \times \frac{2}{4}$	$\square \times \square$	$\square \times$
\#3	$\frac{8}{4} \times \frac{5}{15}$	$\square \times \square$	[\quad - $=$
\#4	$\frac{16}{9} \times \frac{2}{4}$	- \times -	[\quad - $=$
\#5	$\frac{3}{5} \times \frac{6}{9}$	$\square \times$	[\quad - $=$
\#6	$\frac{2}{3} \times \frac{5}{20}$	$\square \times \square$	- \quad - $=$
\#7	$\frac{2}{4} \times \frac{6}{7}$	$\square \times \square$	[\quad - $=$
\#8	$\frac{10}{8} \times \frac{4}{7}$	$\square \times$	[\quad - $=$
\#9	$\frac{3}{7} \times \frac{7}{4}$	$\square \times \square$	- \times - $=$
\#10	$\frac{16}{9} \times \frac{2}{4}$	$\square \times-$	$\square \times$
\#11	$\frac{2}{3} \times \frac{6}{8}$	$\square \times$	$\square \times$

Whole Numbers : Unit Fractions

\#1 PRINTOUT (Set A)

\#2 PRINTOUT (Set B)

\#3 PRINTOUT (Set C)

Dividing Whole Numbers by Fractions

For the items that have pictures, show the division of the wholes to find your answer.

For the items that have no pictures, use a math calculation to find your answer.
$\binom{3}{50} 4 \div \frac{1}{9}=$
$(3)^{n}(\mathbb{O}) \quad 2 \div \frac{1}{5}=$

Complete the division sentences and then write a full multiplication equation.

$4 \div \frac{1}{3}=$
 Solve she fivision heree

$$
\text { (} \mathbf{(3 1 1)} 7 \div \frac{1}{8}=
$$

(\% 3 (12) $6 \div \frac{1}{4}=\square$ Solve she fivision heree

Wxitie a mulrpilicexion sandence besed on the division soluriens
(130) $9 \div \frac{1}{5}=$

Solve the fivision heres

(Has) $12 \div \frac{1}{6}=\square$ Solve she division hereo

Wrfti a mulidilicefion sentience Besed on the division solurions

Dividing Whole Numbers by Fractions

For the items that have pictures, show the division of the wholes to find your answer.

For the items that have no pictures, use a math calculation to find your answer.
(쎤ㄷ) $12 \div \frac{1}{5}=$
$\left(5 \min ^{2}(6)\right) 5 \div \frac{1}{9}=$

\square
$10 \div \frac{1}{13}=$
$9 \div \frac{1}{8}=$

Complete the division sentences and then write a full multiplication equation.
(\%) $10 \div \frac{1}{7}=$
Solve she fivivision hered

Whitte a mulfiplicaition sentence based on the division solurion:
(1010) $8 \div \frac{1}{4}=\square$

Solve ste fivision heres
(3I2) $2 \div \frac{1}{9}=\square$ Solve stae fivision hete

Whitie a mulifiplicetion senfence based on she division solurions
(mis) $5 \div \frac{1}{6}=\square$ Solve she division heres

Whitie a mulifiplicetion senience based on the division solurions
(Misi4) $3 \div \frac{1}{12}=\square$ Solve sthe division heyec

Whets a mulipplicaition senfence based on the division solutions

\qquad

Dividing Whole Numbers by Fractions

For the items that have pictures, show the division of the wholes to find your answer.

For the items that have no pictures, use a math calculation to find your answer.
$\left(\right.$ (\% 5) $5 \div \frac{1}{11}=$
$\left(5 \div \frac{1}{3}=\square\right.$
$\left(\right.$ (\%)T) $7 \div \frac{1}{8}=\square$
(
$\binom{4}{4} 8 \div \frac{1}{4}=$

Complete the division sentences and then write a full multiplication equation．
（ $\mathbf{3}$（10） $3 \div \frac{1}{8}=\square$ Solve she division here
（\％ivi） $5 \div \frac{1}{7}=\square$ Solve she civision heree

Writie a mulroplieefion semience based on the division solurions
（3im） $8 \div \frac{1}{2}=\square$ Solve she division heres

Wiftie a muliflicerfion senience based on the division solurions
（⿲二丨⿱土土卜⿴囗十

Wifite a mulidplicefion sentience Based on the division solurions
（3unt $4 \div \frac{1}{4}=\square$ Solve ithe fifvision heree

Wiftie a mulidiblicition senience Pased on ithe division solurions

\#1 PRINTOUT (Set A)

\#2 PRINTOUT (Set B)

\#3 PRINTOUT (Set C)

Name
Set C : Two pages

Dividing Fractions by Whole Numbers
For the items that have pictures, show the division of the wholes to find your answer.
(
(1) $\frac{1}{6} \div 4=$ \square
(3 ${ }^{2} 2$ 2)
$\frac{1}{10} \div 2=$ \square
\square

Dividing Fractions by Whole Numbers

For the items that have pictures, show the division of the wholes to find your answer.

For the items that have no pictures, use a math calculation to find your answer.
$\left(\right.$ (mit) $\frac{1}{8} \div 5=\square$
$\binom{5 x^{2}(6)}{6} \quad \frac{1}{7} \div 3=$

(
(3) $\frac{1}{12} \div 3=\square$

Complete the division sentences and then write a full multiplication equation.
(min $\frac{1}{3} \div 4=\square$ solve stan division here

Whete a mulfiplicaiton senience based on the division solurions (mati) $\frac{1}{8}+2=\square$ 8olve she division here

Writie a mulitiplicaiton senience based on the division solurions (\%is) $\frac{1}{7} \div 4=\square$ Selve ithe fivision hedes

Whitie a mullipliceiton sentence Based on the division solution:

Whitie a mulifiplicaition senience based on the division solutions
(minit $\frac{1}{2} \div 6=\square$ Solve she division hereo

Whitie a mulitipication sentence based on the division solutions

Name \qquad

Dividing Fractions by Whole Numbers

For the items that have pictures, show the division of the wholes to find your answer.

(3n2) $\frac{1}{3} \div 3=$

$\left(3 \pi^{2}-3\right) \quad \frac{1}{6} \div 2=$

$\left(4 m^{m}-4\right) \quad \frac{1}{2} \div 3=$

For the items that have no pictures, use a math calculation to find your answer.

((2)
$\left(5{ }^{2} \mathrm{~F}\right.$

(3) $\frac{1}{5} \div 8=\square$

Complete the division sentences and then write a full multiplication equation.
()

Solve she fifursion herec

WWitie a mulreplication sentence Based on the division solurions
(10ำ10) $\quad \frac{1}{10} \div 7=\square$
Solve she fifrision herie

Wifte a mulfiplicaifion senience based on the division solutions

Whitie a mulisiplicaition senience based on the division solusions
(आ⿺辶

Wirtie a mulipplicaition sentence based on the division solurion:
(uys) $\frac{1}{15} \div 3=\square$ Solve she fivision heree

Writie a mulitplicaiton senience based on the division solurions

Dividing Fractions by Whole Numbers

For the items that have pictures, show the division of the wholes to find your answer.

For the items that have no pictures, use a math calculation to find your answer.

(

Complete the division sentences and then write a full multiplication equation.
(mion) $\frac{1}{12} \div 9=\square$ Solve stie civision hereo

WN:fte a mulfoplicaifon sentence based on the division solurions (miri) $\frac{1}{5} \div 13=\square$ Solve she finvision heree

Whitie a mulfiplicaition sentence based on the division solurion:
(mim $)^{3} \quad \frac{1}{8} \div 7=$
Solve the didussen hene

Wifte a mulfiplicaition sentence based on the division solurions
(⿲u丨u) $\frac{1}{6} \div 6=\square$ Solve stee Civision hereo

WWitie a mulfiplicaition sentence based on the division solurion:

WN:tie a mulitplication senience based on the division solution:

Count Cubes to Calculate Volume

\#1 PRINTOUT (with answers for you to refer to)

Name: \square
Volume Cubes

Count the cubes and write the volume of each shape.
The first one has been done for you as an example.
a.

b.

c.

d.

16 cubic units
\#2 FLASHCARDS (with answers to refer to)

\#3 PRINTOUT (with answers for you to refer to)

Name: \qquad

Volume Cubes

Count the cubes and write the volume of each shape. The first one has been done for you as an example.
a.

b.

C.

d.

16 cubic units

f.

g.

h.

i.

J.

k.

I.

\qquad

Volume Cubes - ANSWER KEY

Count the cubes and write the volume of each shape. The first one has been done for you as an example.
a.

16 cubic units
e.

60 cubic units
b.

36 cubic units
f.

30 cubic units
C.

18 cubic units
g.

30 cubic units

36 cubic units
d.

60 cubic units
h.

24 cubic units
I.

96 cubic units

Find Volume by CountingCubes

Find the volume (in cm).

Find Volume by CountingCubes

Find the volume (in cm).

Find the volume (in cm).

$30 \mathrm{~cm}^{3}$

30 cm

Find the volume (in cm).

Find the volume (in cm).

$60 \mathrm{~cm}^{3}$

Find Volume by CountingCubes

Find the volume (in cm).

Find Volume by CountingCubes

Find the volume (in cm).

Find the volume (in cm).

$40 \mathrm{~cm}^{3}$

20 cm

Find Volume by CountingCubes

Find the volume (in cm).

Find Volume by CountingCubes

Find the volume (in cm).

Find the volume (in cm).

$30 \mathrm{~cm}^{3}$

$20 \mathrm{~cm}{ }^{3}$

$75 \mathrm{~cm}^{3}$

Find Volume by CountingCubes

Find the volume (in cm).

-
Find the volume (in cm).

Find Volume by CountingCubes

Find the volume (in cm).

Find Volume by CountingCubes

Find the volume (in cm).

$40 \mathrm{~cm}^{3}$

1.	$30 \mathrm{~cm}^{3}$
2.	$30 \mathrm{~cm}^{3}$
3.	$30 \mathrm{~cm}^{3}$
4.	$64 \mathrm{~cm}^{3}$
5.	$8 \mathrm{~cm}^{3}$
6.	$60 \mathrm{~cm}^{3}$
7.	$30 \mathrm{~cm}^{3}$
8.	$125 \mathrm{~cm}^{3}$
9.	$40 \mathrm{~cm}^{3}$
10.	$20 \mathrm{~cm}^{3}$
11.	$12 \mathrm{~cm}^{3}$
12.	$12 \mathrm{~cm}^{3}$
13.	$30 \mathrm{~cm}^{3}$
14.	$20 \mathrm{~cm}^{3}$
15.	$100 \mathrm{~cm}^{3}$
16.	$75 \mathrm{~cm}^{3}$
17.	$12 \mathrm{~cm}^{3}$
18.	$40 \mathrm{~cm}^{3}$
19.	$40 \mathrm{~cm}^{3}$
20.	$80 \mathrm{~cm}^{3}$

\#1 PRINTOUT (Set A)

\#2 PRINTOUT (Set B)

\#3 PRINTOUT (Set C)

\qquad Set A Two pages

Volumes of Rectangular Prisms
Be sure to include the correct units.

Remember:

The volume of a rectangular prism is LENGTH x WIDTH x HEIGHT

Volume $=$ \qquad

Volume $=$ \qquad

Volume $=$ \qquad

\#6

Volume $=$ \qquad
Volume $=$ \qquad

The volume of this rectangular prism is $24 \mathrm{yd}^{3}$. What is the missing measurement for z ?

The volume of this rectangular prism is $20 \mathrm{~cm}^{3}$. What is the missing measurement for r ?

The volume of this rectangular prism is $60 \mathrm{in}^{3}$. What is the missing measurement for d ?
\#8

Look at the horse trough above. What is its volume?
\qquad
\#10

Look at the recipe card box above. What is its volume?

Look at the ornament box above. What is its volume?

Name \qquad Set B Two pages

Volumes of Rectangular Prisms

Be sure to include the correct units.

Remember:

The volume of a rectangular prism is LENGTH \times WIDTH \times HEIGHT

Volume $=$ \qquad
\#2

Volume $=$ \qquad

The volume of this rectangular prism is $72 \mathrm{in}^{3}$. What is the missing measurement for c ?

Look at the dollhouse drawer above. What is its volume?

Volume $=$ \qquad
\#6

Volume $=$ \qquad

Look at the sandbox above. What is its volume?

Volume $=$ \qquad

Look at the pop tarts box above.
What is its volume?

The volume of this rectangular prism is $30 \mathrm{yd}^{3}$. What is the missing measurement for v ?

Volume $=$

\qquad

The volume of this rectangular prism is $10 \mathrm{yd}^{3}$. What is the missing measurement for n ?
\qquad

Calculating Volume of Rectangular Prisms

Be sure to include the correct units.

The volume of this rectangular prism is $60 \mathrm{yd}^{3}$.
What is the missing measurement for the value of b ?
\qquad

The volume of this rectangular prism is $60 \mathrm{ft}^{3}$.
What is its height?
\qquad

\#3
The volume of this rectangular prism is $10 \mathrm{~cm}^{3}$.
What is the missing measurement for the value of v ?

The volume of this rectangular prism is $10 \mathrm{yd}^{3}$.
What is its height?
\qquad

\#5

Volume $=$ \qquad
\#6

Volume $=$ \qquad
\qquad

Volume $=$

Volume $=$
\qquad

Volume = \qquad

Volume = \qquad

