	$3 / 2 / 2020$	----- to	$3 / 6 / 2020$	OTADAS
Monday	Tuesday	Wednesday	Thursday	Friday
Standard	Standard	Standard	Standard	Standard
4.NF. 2	5.NF. 1	4.NF. 1	5.NF. 1	4.NF. 1
Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, $=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d$ $=(a d+b c) / b d$.)	Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d$ $=(a d+b c) / b d$.	Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.
Vocabulary	Vocabulary	Vocabulary	Vocabulary	Vocabulary
numerator, denominator, equivalent, equal to, greater than, less than	equivalent fraction, numerator, denominator, rename, sum, difference	equivalent fraction, numerator, denominator, rename	equivalent fraction, numerator, denominator, rename, sum, difference	equivalent fraction, numerator, denominator, rename
Content Objective				
SWD analysis of fractional sizes by accurately comparing fractions using both number sense and pattern blocks.	SWD application of addition with fractions by correctly solving problems on a LIM page that requires them to rename both fractions in order to get a common denominator.	SWD application of fraction equivalence by correctly identifying equivalent fractions within a Quizizz competition.	SWD application of subtraction with fractions by correctly solving problems on a LIM page that requires them to rename both fractions in order to get a common denominator.	SWD application of fraction equivalence by correctly identifying equivalent fractions within a Bingo game.
Objective	Language Objective	Language Objective	Language Objective	Language Objective
SW orally explain fraction equivalence using the stem "When I was comparing fractions using number sense I learned that \qquad ."	SW orally describe fraction addition using the prompt "What did you notice about fraction adding two fractions today?"	SW write a Type 1 response about equivalent fractions using the cloze statement "I did \qquad at Quizizz than I thought because \qquad ."	SW orally describe fraction subtraction using the prompt "What did you notice about fraction subtracting two fractions today?"	SW write a Type 1 response about equivalent fractions using the stem "The hardest fraction for me during the game was \qquad ."

STRONG	$3 / 2 / 2020$	----- to -----	$3 / 6 / 2020$	OTANDS
Monday	Tuesday	Wednesday	Thursday	Friday
Standard	Standard	Standard	Standard	Standard
5.NF. 1				
Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d$ $=(a d+b c) / b d$.)	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d$ $=(a d+b c) / b d$.)	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d$ $=(a d+b c) / b d$. $)$	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d$ $=(a d+b c) / b d$. $)$	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d$ $=(a d+b c) / b d$. $)$
Vocabulary	Vocabulary	Vocabulary	Vocabulary	Vocabulary
equivalent fraction, numerator, denominator, rename, sum, difference				
Content Objective				
SWD application of adding and subtracting fractions with unlike denominators by correctly solving equations that require the creation of one equivalent fraction.	SWD application of adding and subtracting fractions with unlike denominators by completing a quiz that requires the creation of one equivalent fraction.	SWD application of addition and subtraction with fractions by correctly solving problems on a single-sided page that requires them to rename both fractions in order to get a common denominator.	SWD application of addition and subtraction with fractions by correctly solving problems on a double-sided paper that requires them to rename both fractions in order to get a common denominator.	SWD application of adding fractions with unlike denominators by solving equations in which one denominator gets renamed and whose sums exceed one whole.
Language Objective				
SW write a Type 2 response using the prompt "Explain why $2 / 5$ and $4 / 10$ are equivalent."	SW orally explain fraction addition fractions using the cloze statement "To add $7 / 9+1 / 3$, I first have to rename \qquad as \qquad ."	SW write a Type 2 paragraph about adding fractions using the prompt "Explain why $3 / 4+$ $1 / 8$ is not equal to 4/12."	SW orally explain subtracting fractions using the cloze statement "To subtract 11/12-5/9, I first have to rename \qquad as \qquad ."	SW write a Type 3 essay about subtracting fractions using the prompt "Find and fix the error that was made by a student whose solved 9/10$5 / 6=4 / 4 . "$

STRONG				(6)TRI GRADR
	$3 / 2 / 2020$	----- to -----	$3 / 6 / 2020$	
Monday	Tuesday	Wednesday	Thursday	Friday
Standard	Standard	Standard	Standard	Standard
	5.NF. 1	5.NF. 1	4.NF. 2	5.NF. 1
Class canceled due to $8^{\text {th }}$ Grade WIDA Testing.	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d$ $=(a d+b c) / b d$. $)$	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. $($ In general, $a / b+c / d$ $=(a d+b c) / b d$.	Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>_{1}=$, or <, and justify the conclusions, e.g., by using a visual fraction model.	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d$ $=(a d+b c) / b d$.
Vocabulary	Vocabulary	Vocabulary	Vocabulary	Vocabulary
Class canceled due to $8^{\text {th }}$ Grade WIDA Testing.	numerator, denominator, equivalent, multiplier	numerator, denominator, equivalent, multiplier	numerator, denominator, equivalent, equal to, greater than, less than	numerator, denominator, equivalent, multiplier
Content Objective				
Class canceled due to $8^{\text {th }}$ Grade WIDA Testing.	SWD application of subtracting fractions with unlike denominators by correctly solving equations that require the creation of one equivalent fraction.	SWD application of adding and subtracting fractions with unlike denominators by correctly solving equations that require the creation of one equivalent fraction.	SWD application of fractional sizes by completing a graded quiz that involves the comparing of fractions using the symbols $>,<,=$.	SWD application of adding and subtracting fractions with unlike denominators by completing a quiz that requires the creation of one equivalent fraction.
Language Objective				
Class canceled due to $8^{\text {th }}$ Grade WIDA Testing.	SW write a Type 2 response using the prompt "Explain why $2 / 5$ and $4 / 10$ are equivalent."	SW orally explain fraction addition fractions using the cloze statement "To add $7 / 9+1 / 3$, I first have to rename \qquad as \qquad ."	SW write an Exit Card about adding and subtracting fractions using the prompt "Find the sum of $3 / 10+1 / 4$ and find the difference of 5/6 3/8."	SW orally explain subtracting fractions using the cloze statement "To subtract 11/12-5/9, I first have to rename \qquad as \qquad ."

